JOHNSON, DIANNA A. Ph.D.

Professor, Department of Ophthalmology
Director, Postdoc Office

Office: 732 930 Madison Building
Tel: (901) 448-1375
dijohnson@uthsc.edu
http://www.eye.uthsc.edu/dept/faculty/djohnson.html

Education

  • PostDoc, University of California at Irvine, Irvine, CA, Psychobiology
  • Ph.D., University of Kansas, Kansas City, KS, Biology/Neurobiology
  • B.S., Centenary College, Shreveport, LA, Biology

Research description

Research in the Johnson lab focuses on basic questions of retinal structure and function, retinal development, retinal degeneration, and retinal disease. As the most approachable part of the brain, the retina provides the opportunity to investigate neuronal mechanisms that not only serve critical visual functions, but also serve as models for other brain functions as well. The orderly arrangement of retinal neurons is particularly amenable to morphological analyses using light and confocal microscopy as well as scanning and transmission electron microscopy. These techniques are employed for immunocytochemical localization, 3-D reconstruction, and various morphometric analyses in a number of ongoing projects. In conjunction with Dr. Michael Dyer from St. Jude, we have described important attributes of retinal tumorogenesis in the most prevalent type of childhood eye tumor, retinoblastoma. Heretofore unappreciated characteristics of retinoblastoma tumor, including abnormal differentiation and corrupt re-wiring of adjacent normal retina, help in developing new strategies for treatment in this blinding disorder affecting children. Excitotoxic actions of glutamate have been well documented in virtually all types of nervous tissue including retina. It has been suggested that the loss of retinal neurons resulting from a variety of causes including ischemia, laser exposure, glaucoma and developmentally programmed cell death, may all involve a common pathway triggered by abnormal release of glutamate. In experiments utilizing both rabbit and human retinas, they are examining this hypothesis in order to determine the intra-cellular mechanisms involved and to test the efficacy of pharmacological agents in protecting against glutamate-induced cell death.

Publications

  1. Bhattacharya, S, Ray, RM, Chaum, E, Johnson, DA, Johnson, LR. Inhibition of Mdm2 sensitizes human retinal pigment epithelial cells to apoptosis. Invest Ophthalmol Vis Sci, 2011.
  2. Zhang, Q, Wang, D, Kundumani-Sridharan, V, Gadiparthi, L, Johnson, DA, Tigyi, GJ, Rao, GN. PLD1-dependent PKCgamma activation downstream to Src is essential for the development of pathologic retinal neovascularization. Blood, 116 (8), 1377-85, 2010.
  3. Laurie, N, Mohan, A, McEvoy, J, Reed, D, Zhang, J, Schweers, B, Ajioka, I, Valentine, V, Johnson, D, Ellison, D, Dyer, MA. Changes in retinoblastoma cell adhesion associated with optic nerve invasion. Mol Cell Biol, 29 (23), 6268-82, 2009.
  4. Cicero, SA, Johnson, D, Reyntjens, S, Frase, S, Connell, S, Chow, LM, Baker, SJ, Sorrentino, BP, Dyer, MA. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci U S A, 106 (16), 6685-90, 2009.
  5. Zhao, T, Wang, D, Cheranov, SY, Karpurapu, M, Chava, KR, Kundumani-Sridharan, V, Johnson, DA, Penn, JS, Rao, GN. A novel role for activating transcription factor-2 in 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis. J Lipid Res, 50 (3), 521-33, 2009.
  6. Laurie N, Mohan A, McEvoy J, Reed D, Zhang J, Schweers B, Ajioka I, Valentine V, Johnson D, Ellison D, Dyer MA. Changes in retinoblastoma cell adhesion associated with optic nerve invasion. Laurie N, Mohan A, McEvoy J, Reed D, Zhang J, Schweers B, Ajioka I, Valentine V, Johnson D, Ellison D, Dyer MA.. Mol Cell Biol., 29(23), 6268-82, 2009.
  7. Sharma, RK, Netland, PA, Kedrov, MA, Johnson, DA. Preconditioning protects the retinal pigment epithelium cells from oxidative stress-induced cell death. Acta Ophthalmol, 2008.
  8. Johnson, DA, Zhang, J, Frase, S, Wilson, M, Rodriguez-Galindo, C, Dyer, MA. Neuronal differentiation and synaptogenesis in retinoblastoma. Cancer Res, 67 (6), 2701-11, 2007.
  9. Laurie, NA, Donovan, SL, Shih, CS, Zhang, J, Mills, N, Fuller, C, Teunisse, A, Lam, S, Ramos, Y, Mohan, A, Johnson, D, Wilson, M, Rodriguez-Galindo, C, Quarto, M, Francoz, S, Mendrysa, SM, Guy, RK, Marine, JC, Jochemsen, AG, Dyer, MA. Inactivation of the p53 pathway in retinoblastoma. Nature, 444 (7115), 61-6, 2006.
  10. Johnson, DA, Donovan, SL, Dyer, MA. Mosaic deletion of Rb arrests rod differentiation and stimulates ectopic synaptogenesis in the mouse retina. J Comp Neurol, 498 (1), 112-28, 2006.
  11. Donovan, SL, Schweers, B, Martins, R, Johnson, D, Dyer, MA. Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biol, 4, 14, 2006.
  12. Sharma, RK, Orr, WE, Schmitt, AD, Johnson, DA. A functional profile of gene expression in ARPE-19 cells. BMC Ophthalmol, 5, 25, 2005.
  13. Sharma, RK, O'Leary, TE, Fields, CM, Johnson, DA. Development of the outer retina in the mouse. Brain Res Dev Brain Res, 145 (1), 93-105, 2003.
  14. Withrow, C, Ashraf, S, O'Leary, T, Johnson, LR, Fitzgerald, ME, Johnson, DA. Effect of polyamine depletion on cone photoreceptors of the developing rabbit retina. Invest Ophthalmol Vis Sci, 43 (9), 3081-90, 2002.
  15. Johnson, DA, Fields, C, Fallon, A, Fitzgerald, ME, Viar, MJ, Johnson, LR. Polyamine-dependent migration of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 43 (4), 1228-33, 2002.
  16. Calzada, JI, Jones, BE, Netland, PA, Johnson, DA. Glutamate-induced excitotoxicity in retina: neuroprotection with receptor antagonist, dextromethorphan, but not with calcium channel blockers. Neurochem Res, 27 (1-2), 79-88, 2002.
  17. Withrow, CM, Johnson, DA. Photoreceptor-horizontal cell reaggregation in monolayer cultures of neonatal rabbit retina. J Comp Neurol, 431 (3), 241-54, 2001.
  18. Huang, B, Mitchell, CK, Redburn-Johnson, DA. GABA and GABA(A) receptor antagonists alter developing cone photoreceptor development in neonatal rabbit retina. Vis Neurosci, 17 (6), 925-35, 2001.
  19. Sharma, RK, Johnson, DA. Molecular signals for development of neuronal circuitry in the retina. Neurochem Res, 25 (9-10), 1257-63, 2000.
  20. Mitchell, CK, Huang, B, Redburn-Johnson, DA. GABA(A) receptor immunoreactivity is transiently expressed in the developing outer retina. Vis Neurosci, 16 (6), 1083-8, 1999.
  21. Haberecht, MF, Schmidt, HH, Mills, SL, Massey, SC, Nakane, M, Redburn-Johnson, DA. Localization of nitric oxide synthase, NADPH diaphorase and soluble guanylyl cyclase in adult rabbit retina. Vis Neurosci, 15 (5), 881-90, 1998.
  22. Redburn-Johnson, D. GABA as a developmental neurotransmitter in the outer plexiform layer of the vertebrate retina. Perspect Dev Neurobiol, 5 (2-3), 261-7, 1998.
  23. Haberecht, MF, Mitchell, CK, Lo, GJ, Redburn, DA. N-methyl-D-aspartate-mediated glutamate toxicity in the developing rabbit retina. J Neurosci Res, 47 (4), 416-26, 1997.
  24. Mitchell, CK, Redburn, DA. GABA and GABA-A receptors are maximally expressed in association with cone synaptogenesis in neonatal rabbit retina. Brain Res Dev Brain Res, 95 (1), 63-71, 1996.
  25. Redburn, DA, Rowe-Rendleman, C. Developmental neurotransmitters. Signals for shaping neuronal circuitry. Invest Ophthalmol Vis Sci, 37 (8), 1479-82, 1996.
  26. Rowe-Rendleman, C, Mitchell, CK, Habrecht, M, Redburn, DA. Expression and downregulation of the GABAergic phenotype in explants of cultured rabbit retina. Invest Ophthalmol Vis Sci, 37 (6), 1074-83, 1996.
  27. Huang, BO, Redburn, DA. GABA-induced increases in [Ca2+]i in retinal neurons of postnatal rabbits. Vis Neurosci, 13 (3), 441-7, 1996.
  28. Haberecht, MF, Redburn, DA. High levels of extracellular glutamate are present in retina during neonatal development. Neurochem Res, 21 (2), 285-91, 1996.
  29. Mitchell, CK, Rowe-Rendleman, CL, Ashraf, S, Redburn, DA. Calbindin immunoreactivity of horizontal cells in the developing rabbit retina. Exp Eye Res, 61 (6), 691-8, 1995.
  30. Schousboe, A, Redburn, DA. Modulatory actions of gamma aminobutyric acid (GABA) on GABA type A receptor subunit expression and function. J Neurosci Res, 41 (1), 1-7, 1995.
  31. Messersmith, EK, Redburn, DA. The role of GABA during development of the outer retina in the rabbit. Neurochem Res, 18 (4), 463-70, 1993.
  32. Messersmith, EK, Redburn, DA. gamma-Aminobutyric acid immunoreactivity in multiple cell types of the developing rabbit retina. Vis Neurosci, 8 (3), 201-11, 1992.
  33. Redburn, DA, Agarwal, SH, Messersmith, EK, Mitchell, CK. Development of the glutamate system in rabbit retina. Neurochem Res, 17 (1), 61-6, 1992.
  34. Redburn, DA. Development of GABAergic neurons in the mammalian retina. Prog Brain Res, 90, 133-47, 1992.
  35. Mitchell, CK, Redburn, DA. Melatonin inhibits ACh release from rabbit retina. Vis Neurosci, 7 (5), 479-86, 1991.
  36. Friedman, DL, Redburn, DA. Evidence for functionally distinct subclasses of gamma-aminobutyric acid receptors in rabbit retina. J Neurochem, 55 (4), 1189-99, 1990.
  37. Messersmith, EK, Redburn, DA. Kainic acid lesioning alters development of the outer plexiform layer in neonatal rabbit retina. Int J Dev Neurosci, 8 (4), 447-61, 1990.
  38. Redburn, DA, Mitchell, CK. Darkness stimulates rapid synthesis and release of melatonin in rat retina. Vis Neurosci, 3 (5), 391-403, 1989.
  39. Mitchell, CK, Redburn, DA. AP4 inhibits chloride-dependent binding and uptake of [3H]glutamate in rabbit retina. Brain Res, 459 (2), 298-311, 1988.
  40. Redburn, DA. Neurotransmitter systems in the outer plexiform layer of mammalian retina. Neurosci Res Suppl, 8, S127-36, 1988.
  41. Chentanez, T, Redburn, DA. Synaptosomal neurotransmitter uptake systems in the retina and brain nuclei of light- and dark-adapted rabbits. Brain Res, 424 (1), 115-8, 1987.
  42. Redburn, DA, Churchill, L. An indoleamine system in photoreceptor cell terminals of the Long-Evans rat retina. J Neurosci, 7 (2), 319-29, 1987.
  43. Massey, SC, Redburn, DA. Transmitter circuits in the vertebrate retina. Prog Neurobiol, 28 (1), 55-96, 1987.
  44. Moran, J, Pasantes-Morales, H, Redburn, DA. Glutamate receptor agonists release [3H]GABA preferentially from horizontal cells. Brain Res, 398 (2), 276-87, 1986.
  45. Redburn, DA, Madtes, P. Postnatal development of 3H-GABA-accumulating cells in rabbit retina. J Comp Neurol, 243 (1), 41-57, 1986.
  46. Massey, SC, Redburn, DA. Light evoked release of acetylcholine in response to a single flash: cholinergic amacrine cells receive ON and OFF input. Brain Res, 328 (2), 374-7, 1985.
  47. Mitchell, CK, Redburn, DA. Analysis of pre- and postsynaptic factors of the serotonin system in rabbit retina. J Cell Biol, 100 (1), 64-73, 1985.
  48. Redburn, DA. Serotonin systems in the inner and outer plexiform layers of the vertebrate retina. Fed Proc, 43 (12), 2699-703, 1984.
  49. Redburn, DA, Donoso, JA, Mitchell, CK, Gomez-Ramos, P, Samson, FE. Kainic acid-induced denervation supersensitivity of nicotinic, cholinergic receptors in ganglion cells of the rat retina. Exp Eye Res, 38 (5), 449-61, 1984.
  50. Smith, EL, Redburn, DA, Harwerth, RS, Maguire, GW. Permanent alterations in muscarinic receptors and pupil size produced by chronic atropinization in kittens. Invest Ophthalmol Vis Sci, 25 (2), 239-43, 1984.
  51. Madtes, P, Redburn, DA. GABA as a trophic factor during development. Life Sci, 33 (10), 979-84, 1983.
  52. Madtes, P, Redburn, DA. Intraocular injections of nipecotic acid produce a preferential block of neuronal 3H-GABA accumulation in adult rabbit retina. Invest Ophthalmol Vis Sci, 24 (7), 886-92, 1983.
  53. Madtes, PC, Redburn, DA. Synaptic interactions in the GABA system during postnatal development in retina. Brain Res Bull, 10 (6), 741-5, 1983.
  54. Hampton, CK, Redburn, DA. Autoradiographic analysis of 3H-glutamate, 3H-dopamine, and 3H-GABA accumulation in rabbit retina after kainic acid treatment. J Neurosci Res, 9 (3), 239-51, 1983.
  55. Massey, SC, Redburn, DA, Crawford, ML. The effects of 2-amino-4-phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina. Vision Res, 23 (12), 1607-13, 1983.
  56. Massey, SC, Redburn, DA. The cholinergic amacrine cells of rabbit retina receive on and off input: an analysis of [3H]-ACh release using 2-amino-4-phosphonobutyric acid (APB) and chloride free medium. Vision Res, 23 (12), 1615-20, 1983.
  57. Massey, SC, Redburn, DA. A tonic gamma-aminobutyric acid-mediated inhibition of cholinergic amacrine cells in rabbit retina. J Neurosci, 2 (11), 1633-43, 1982.
  58. Madtes, P, Redburn, DA. [3H]GABA binding in developing rabbit retina. Neurochem Res, 7 (4), 495-503, 1982.
  59. Mitchell, CK, Redburn, DA. 2-amino-4-phosphonobutyric acid and N-methyl-D-aspartate differentiate between "3H]glutamate and [3H] aspartate binding sites in bovine retina. Neurosci Lett, 28 (3), 241-6, 1982.
  60. Redburn, DA, Massey, SC. GABA and its interaction with ACh in the rabbit retina. Adv Biochem Psychopharmacol, 29, 169-74, 1981.
  61. Redburn, DA, Thomas, TN. Evidence for a serotonin neurotransmitter system in bovine retina. Vision Res, 21 (11), 1673-6, 1981.
  62. Hampton, CK, Garcia, C, Redburn, DA. Localization of kainic acid-sensitive cells in mammalian retina. J Neurosci Res, 6 (1), 99-111, 1981.
  63. Redburn, DA, Mitchell, CK. 3H-muscimol binding in synaptosomal fractions from bovine and developing rabbit retinas. J Neurosci Res, 6 (4), 487-95, 1981.
  64. Redburn, DA, Kyles, CB. Localization and characterization of dopamine receptors within two synaptosome fractions of rabbit and bovine retina. Exp Eye Res, 30 (6), 699-708, 1980.
  65. Redburn, DA, Chentanez, T. Effect of morphine in vivo on uptake of [3H]choline and release of [3H]acetylcholine from rat striatal synaptosomes. Biochem Pharmacol, 28 (19), 2961-6, 1979.
  66. Redburn, DA, Thomas, TN. Isolation of synaptosomal fractions from rabbit retina. J Neurosci Methods, 1 (3), 235-42, 1979.
  67. Moorhead, LC, Redburn, DA, Merritt, J, Garcia, CA. The effects of intravitreal irrigation during vitrectomy on the electroretinogram. Am J Ophthalmol, 88 (2), 239-45, 1979.
  68. Redburn, DA, Stramler, J, Potter, LT. Inhibition by reserpine of calcium-dependent release of [3H]norepinephrine from synaptosomes depolarized with potassium or veratridine. Biochem Pharmacol, 28 (13), 2091-4, 1979.
  69. Redburn, DA, Kyles, CB, Ferkany, J. Subcellular distribution of GABA receptors in bovine retina. Exp Eye Res, 28 (5), 525-32, 1979.
  70. Thomas, TN, Redburn, DA. 5-Hydroxytryptamine -- a neurotransmitter of bovine retina. Exp Eye Res, 28 (1), 55-61, 1979.
  71. Redburn, DA. Relationship between synaptosomal uptake and release of [14C]gaba, [14C]diaminobutyric acid and [14C]beta-alanine. J Neurochem, 31 (4), 939-45, 1978.
  72. Thomas, TN, Clement-Cormier, YC, Redburn, DA. Uptake and release of [3H]dopamine and dopamine-sensitive adenylate cyclase activity in retinal synaptosomal fractions. Brain Res, 155 (2), 391-6, 1978.
  73. Redburn, DA, Broome, D, Ferkany, J, Enna, SJ. Development of rat brain uptake and calcium-dependent release of GABA. Brain Res, 152 (3), 511-9, 1978.
  74. Thomas, TN, Redburn, DA. Uptake of [14C]aspartic acid and [14C]glutamic acid by retinal synaptosomal fractions. J Neurochem, 31 (1), 63-8, 1978.
  75. Clement-Cormier, YC, Redburn, DA. Dopamine-sensitive adenylate cyclase in retina--subcellular distribution. Biochem Pharmacol, 27 (18), 2281-2, 1978.
  76. Redburn, DA. Uptake and release of [14C]GABA from rabbit retina synaptosomes. Exp Eye Res, 25 (3), 265-75, 1977.
  77. Nadler, JV, White, WF, Vaca, KW, Redburn, DA, Cotman, CW. Characterization of putative amino acid transmitter release from slices of rat dentate gyrus. J Neurochem, 29 (2), 279-90, 1977.
  78. Redburn, DA, Shelton, D, Cotman, CW. Calcium-dependent release of exogenously loaded gamma-amino-[U-14C]butyrate from synaptosomes: time course of stimulation by potassium, veratridine, and the calcium ionophore, A23187. J Neurochem, 26 (2), 297-303, 1976.
  79. Redburn, DA, Biela, J, Shelton, DL, Cotman, CW. Stimulus secretion coupling in vitro: a rapid perfusion apparatus for monitoring efflux of transmitter substances from tissue samples. Anal Biochem, 67 (1), 268-78, 1975.
  80. Redburn, DA, Cotman, CW. Calcium-dependent release of (14C)GABA from vinblastine and colchicine treated synaptosomes. Brain Res, 73 (3), 550-7, 1974.
  81. Levy, WB, Redburn, DA, Cotman, CW. Stimulus-coupled secretion of gamma-aminobutyric acid from rat brain synaptosomes. Science, 181 (100), 676-8, 1973.